#### **Дёмин М.В.**,

кандидат технических наук, доцент кафедры «Холодильной и торговой техники», Донецкого национального университета экономики и торговли имени Михаила Туган – Барановского

#### Брюшков Р.В.,

кандидат технических наук, доцент кафедры «Холодильной и торговой техники», Донецкого национального университета экономики и торговли имени Михаила Туган – Барановского

### Кулешов Д.К.,

кандидат технических наук, старший преподаватель кафедры «Холодильной и торговой техники», Донецкого национального университета экономики и торговли имени Михаила Туган — Барановского

# BOПРОСЫ ХОЛОДИЛЬНОЙ ТЕХНИКИ QUESTIONS REFRIGERATION TECHNOLOGY

# ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК РАБОТЫ БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА ПРИ РАЗНЫХ ЗНАЧЕНИЯХ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕЙ СРЕДЫ

## RESEARCH WORK CHARACTERISTICS HOUSEHOLD REFRIGERATING APPLIANCE AT DIFFERENT TEMPERATURES ENVIRONMENT

**Аннотация** На примере работы бытового холодильного прибора ДХ-239/7 показаны и обоснованы изменения характеристик работы холодильной системы при переменных значениях температуры окружающей среды.

**Abstract** In the example of domestic refrigeration unit DH -239/7 shows and justified changes in the characteristics of the refrigeration system at variable ambient temperatures.

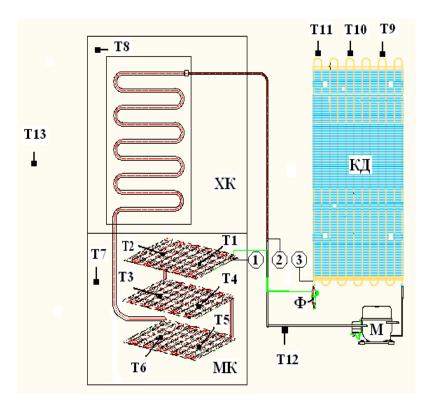
**Ключевые слова:** Бытовой холодильник - Холодильная система - Температура окружающей среды - Коэффициент рабочего времени (КРВ) - Суточный расход электроэнергии - Температура на поверхности испарителя - Удельная массовая холодопроизводительность - Холодильный коэффициент

**Key words:** The household refrigerator- Rrefrigeration system - Ambient temperature - Working time coefficient (WTC) - The daily expense of the electric power - Temperature on evaporator surfaces - Specific mass refrigerating capacity - Refrigerating factor

Изменение поступления теплопритоков в холодильный шкаф бытового холодильного прибора (БХП) напрямую связано с работой холодильной системы при

различных условиях температуры окружающей среды. Особенности и интенсивность теплопритоков в холодильный шкаф в зависимости от температуры окружающей среды подробно рассмотрены в фундаментальной работе [1]. Безусловно, при изменении температура окружающей среды, изменяется характер и интенсивность теплоотдачи с кожуха компрессора и поверхности конденсатора холодильной машины, существенно влияет на давление и температуру конденсации хладагента и, в итоге, - на характеристики работы холодильной системы [2, 3, 5].

Процессы, происходящие в холодильной системе бытового холодильника, при изменении значений температуры окружающей среды мало изучены, хотя стандарты на бытовые холодильные приборы, в том числе национальный стандарт Украины ДСТУ ІЕС 62552:2012 [4], допускают возможность их работы при температуре окружающей среды в интервале от 16 до 43°C. Все характеристики бытового холодильного прибора указываются в его паспорте при температуре окружающей среды 25°C.


Задачей данной работы является проведение исследований характеристик работы бытового холодильного прибора при разных значениях температуры окружающей среды для совершенствования конструкции холодильной системы холодильника.

Цель данной работы – проведение исследований теплоэнергетических характеристик холодильной системы бытового холодильного прибора, который работает в условиях изменения температуры окружающей среды.

Для проведения исследований создан экспериментальный стенд, за основу которого принят бытовой холодильный прибор ДХ-239/7 (общий объём 300л, полезный объём холодильной камеры 197л, морозильной камеры - 67л). Согласно его паспорту, температура в охлаждаемом объёме холодильной камеры +3...+8°С, в морозильной камере не выше –18°С. Холодильная система холодильника заправлена холодильным агентом R600a, доза заправки по нормам установленным заводом изготовителем составляет 41г.

На линии всасывания и нагнетания холодильной системы установлены приборы измерения давления и температуры. Шесть датчиков термопар (Т1 – Т6) расположены на поверхности блока испарителя морозильной камеры в равном удалении одна от другой. Датчик термопары (Т7) расположен в центре геометрического объёма морозильной камеры. Датчик термопары (Т8) расположен в центре геометрического объёма холодильной камеры. Три датчика термопары (Т9, Т10, Т11) закреплены на наружной поверхности конденсатора: в начале, в центре и в конце змеевика теплопередающей поверхности конденсатора, а также на всасывающем патрубке компрессора (Т12). Датчик термопары (Т13) температуры окружающей сред БХП. Холодильник расположен в

лаборатории кафедры холодильной и торговой техники в термокамере аттестованной «Донецкстандартметрологией», где создавалась и поддерживалась в соответствии с [4] требуемая температура. Все термопары подключены к измерительно-вычислительному комплексу, предающему цифровую информацию на персональный компьютер [3]. Схема экспериментального стенда представлена на рисунке 1.



**Рис. 1.** Схема расположения температурных датчиков (термопар) на экспериментальном стенде: Т1 – Т6 – на поверхности испарителя, Т7 – в объёме морозильной камеры, Т8 – в объёме холодильного отделения, Т9 – Т11 – на поверхности конденсатора, Т12 – на поверхности всасывающего трубопровода, Т13 – температура окружающей БХП среды. 1-2 – мановакууметры 3 – манометр. ХК – холодильная камера, МК – морозильная камера, КД – конденсатор, М – компрессор, Ф – фильтр осущитель.

При исследованиях регистрировались: температура на поверхности испарителя (Т1-Т6) и конденсатора (Т9-Т11), температура всасываемых паров холодильного агента непосредственно перед компрессором (Т12); давление на входе в блок испарителя (2) и выходе из него (1), в линии нагнетания (3); расход электроэнергии (использован электросчётчик) [5, 6]. Значение коэффициента рабочего времени (КРВ) компрессора определяли расчётом на основе хронометража времени работы и стоянки компрессора.

Исследования проводились при фиксированных значениях температуры наружного воздуха: 16, 25, 32, 38, 43°C при настройке терморегулятора, соответствующих минимальному (min), среднему (сред) и максимальному (max)охлаждению. Холодильное и

морозильное отделения стенда были заполнены пакетами-имитаторами пищевых продуктов в соответствии с ДСТУ IEC 62552:2012 [3].

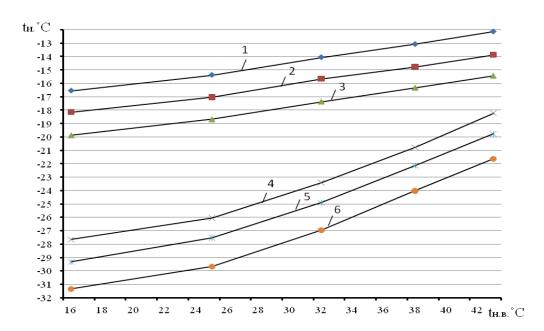
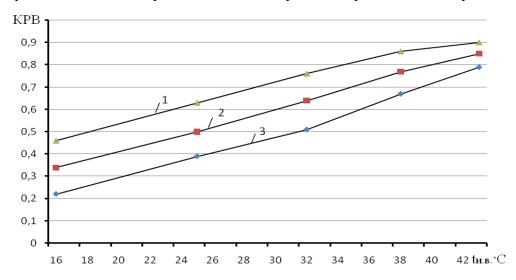

Экспериментальные данные исследований приведенных в таблице 1.

Таблица 1 Теплоэнергетические характеристики холодильника «ДХ – 239/7» при различной температуре окружающей среды.

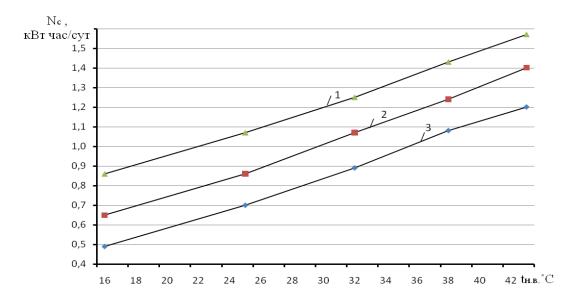
| Темпер<br>атура<br>окружа<br>ющей<br>среды -<br>t, °C | Температура на поверхности испарителя морозильной камеры -t,оС (показания термопары Т3) |        |        |                                 |        |        | КРВ  |      | Суточный расход электроэнергии - $N_c$ , к $B$ т-час/сут |      |      |      |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|--------|---------------------------------|--------|--------|------|------|----------------------------------------------------------|------|------|------|
|                                                       | перед включением компрессора в работу                                                   |        |        | перед остановкой<br>компрессора |        |        |      |      |                                                          |      |      |      |
|                                                       | при настройке терморегулятора                                                           |        |        |                                 |        |        |      |      |                                                          |      |      |      |
|                                                       | min                                                                                     | сред   | max    | min                             | сред   | max    | min  | сред | max                                                      | min  | сред | max  |
| 16                                                    | -16,54                                                                                  | -18,14 | -19,87 | -27,66                          | -29,33 | -31,35 | 0,22 | 0,34 | 0,46                                                     | 0,49 | 0,65 | 0,86 |
| 25                                                    | -15,37                                                                                  | -17,03 | -18,68 | -26,05                          | -27,53 | -29,68 | 0,39 | 0,50 | 0,63                                                     | 0,70 | 0,86 | 1,07 |
| 32                                                    | -14,05                                                                                  | -15,65 | -17,36 | -23,41                          | -24,90 | -26,96 | 0,51 | 0,64 | 0,76                                                     | 0,89 | 1,07 | 1,25 |
| 38                                                    | -13,07                                                                                  | -14,74 | -16,32 | -20,78                          | -22,13 | -24,02 | 0,67 | 0,77 | 0,86                                                     | 1,08 | 1,24 | 1,43 |
| 43                                                    | -12,13                                                                                  | -13,86 | -15,43 | -18,23                          | -19,76 | -21,63 | 0,79 | 0,85 | 0,9                                                      | 1,20 | 1,40 | 1,57 |


В соответствии с полученными данными построены (рис. 2) графики зависимости температуры на поверхности испарителя  $t_{\text{и}}$  (показания термопары Т3 на рисунке 1) от температуры окружающей среды  $t_{\text{н.в.}}$ . Термопара Т3 размещена в центральной части испарителя морозильной камеры.

Так как на термопаре Т3 были получены наиболее стабильные и самые низкие показания температуры на поверхности испарителя морозильной камеры, что определяет ее как наиболее оптимальное место для установки датчика устройства для определения утечки, необходимы дальнейшие исследования этого участка испарителя.



**Рис. 2.** – Графики зависимости численных значений температуры на поверхности испарителя морозильной камеры t<sub>и</sub> (1,2,3 перед включением компрессора в работу) и t<sub>и</sub> (4,5,6 перед остановкой компрессора) от температуры окружающей среды при настройке терморегулятора на охлаждение, соответственно, минимальное, среднее, максимальное


В соответствии с полученными данными построены (рис. 3) графики зависимости КРВ, от температуры окружающей среды t<sub>н.в.</sub> Показания соответствуют термопаре Т3 на рисунке 1 размещенной в центральной части испарителя морозильной камеры.



**Рис.3.** – Графики зависимости численных значений КРВ (1,2,3), от температуры окружающей среды при настройке терморегулятора на охлаждение, соответственно, минимальное, среднее, максимальное

По результаты экспериментальных исследований приведенных в таблице 1. построены (рис. 4) графики зависимости суточного расхода электроэнергии Nc, от

температуры окружающей среды  $t_{\text{н.в.}}$ . По показаниям термопары Т3 размещенной в центральной части испарителя морозильной камеры



**Рис. 4.** – Графики зависимости численных значений суточного расхода электроэнергии  $N_c$  (1,2,3), от температуры окружающей среды при настройке терморегулятора на охлаждение, соответственно, минимальное, среднее, максимальное

теплоэнергетических характеристик работающего Изменение стендового холодильника в связи с увеличением температуры окружающей среды обусловлено увеличением теплопритоков холодильный шкаф, его изменением воздухотеплообменных процессов в компрессорно – конденсаторном отделении, вследствие чего увеличивается температура конденсации хладагента, что приводит к увеличению температуры его кипения в испарителе. Наиболее низкая температура на поверхности испарителя – 31,35°C зарегистрирована при температуре окружающей среды +16°C, при установке терморегулятора на максимальное охлаждение – перед остановкой циклично работающего компрессора, самое высокое значение её –12,13°C зафиксировано при температуре окружающей среды +43°C, при настройке терморегулятора на минимальное охлаждение - перед включением компрессора в работу.

Однозначно, выявленная тенденция распространяется на все модели бытовых холодильников.

Таким образом, изменение температурных условий окружающей среды отражается на теплоэнергетических характеристиках бытового холодильника не только в связи с изменением теплопритоков в холодильный шкаф, но и в связи с существенным изменением термодинамических параметров работы его холодильной системы.

### Список литературы

- 1. Осокин В.В. Научно-технические основы обеспечения надежности, технической и экологической безопасности малой холодильной техники, работающей на углеводородах (на примере изобутана). /В.В.Осокин, В.П.Железный, К.А.Ржесик, Ю.А. Селезнева, В.Г. Матвиенко, А.В. Ландик, Ю.В. Жидков, В.Г.Соколов; М-во образования и науки Украины, Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского. Донецк: ДонНУЭТ, 2009. 244с.
- 2. *Осокин В.В.*, *Кудрин А.Б.*, *Дёмин М.В*. О влиянии температуры окружающей среды на теплоэнергетические характеристики бытового холодильника // Холодильна техніка і технологія. Одеса, 2011. № 1 (129). С. 17-22.
- 3. Горин А. Н. Тепломассообменные аппараты с подвижной насадкой для традиционных и альтернативних энергетических систем. Испарительное охлаждение, осущение и кондиционирование воздуха / А. Н. Горин, А. В. Дорошенко, В. П. Данько. Донецк: Світ книги, 2013. 327 с.
- 4. ДСТУ IEC 62552:2012. Прилади побутові холодильні. Функційні характеристики та методи випробування (IEC 62552:2007, IDT).
- 5. Данько В.П., Ковалев А.А. Основные принципы построения осушительноиспарительных охладителей // Инновационные пищевые технологии в области хранения и переработки сельскохозяйственного сырья : материалы III Международной научнопрактической конференции, посвященной 20- летнему юбилею ГНУ КНИИХП Россельхозакадемии 23-24 мая 2013 г. / Рос. акад. с.-х. наук, Гос. науч. Учреждение Краснодар. НИИ хранения и переработки с.-х. продукции; под общ. ред. член-корр. РАСХН, д-ра техн. наук, проф. Р.И. Шазо. – Краснодар : Издательский Дом – Юг, 2013. – С. 362- 365.
- 6. Экспериментальный стенд для определения коэффициентов теплоотдачи при кипении рабочих тел [Текст] : пат. 77193 Украина : МПК (2013.01) F 25 D 31/00 / Горин А. Н., Красновский И. Н., Данько В. П.; № u201203778; заявл. 28.03.12; публ. 11.02.13, Бюл. № 3. 4 с.